2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages

Sixth Semester B.E. Degree Examination, Aug./Sept. 2020 Digital Signal Processing

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Assume missing data if any.

PART – A

- 1 a. Obtain 8 point DFT of sequence $x(n) = \{1, 1, 1, 1, 0, 0, 0, 0, 0\}$ and hence plot magnitude and phase spectra. (10 Marks)
 - b. State and prove symmetry property for the DFT of a complex sequence. (04 Marks)
 - c. Find the N point DFT of a sequence $x(n) = \cos\left(\frac{2\pi nk_0}{N}\right)$, where $n = 0, 1, 2, \dots N-1$.

(06 Marks)

2 a. Find the circular convolution of sequences $x(n) = \{1, -1, 2, 3\}$ and $h(n) = \{0, 1, 2, 3\}$.

b. Using overlap-ADD fast convolution technique obtain the output y(n) for the input sequence $x(n) = \{3, 0, -2, 0, 2, 1, 0, -2, -1, 0\}$ which is passed through a filter with impulse response $h(n) = \{2, 2, 1\}$.

c. Explain OVERLAP_SAVE fast convolution technique.

(06 Marks)

- 3 a. Obtain 8 point DFT of a sequence x(n) = {1, 2, 3, 4, 4, 3, 2, 1} using decimation in time fast Fourier transform technique. (10 Marks)
 - b. What are the number of complex multiplications and complex additions involved in radix-2 decimation in time fast fourier transform using modified butterfly. Explain with a neat flow diagram for N = 8. (10 Marks)
- 4 a. Develop a fast fourier transform algorithm using decomposition in time for N = 9. (10 Marks)

b. An 8 point DFT of a sequence is given by,

 $X(K) = \{0, 2 - j4.8284, 0, 2 - j0.8284, 0, 2 + j0.8284, 0, 2 + j4.8284\}.$

Obtain the sequence x(n) using Inverse decimation in frequency radix-2 fast Fourier algorithm. (10 Marks)

PART - B

- 5 a. Explain Analog-Analog transformation used to design Low pass, High pass, Band pass, Band reject filters from a normalized low pass analog filter. (08 Marks)
 - b. Design a low pass Chebyshev filter to satisfy the following specifications:
 - (i) Acceptable pass band ripple of 2 dB.
 - (ii) Cut off frequency of 40 rad/sec.
 - (iii) Stop band attenuation of 20 dB or more at 52 rad/sec.

(12 Marks)

- a. Design an IIR digital low pass filter using BILINEAR transformation to satisfy the following condition:
 - Low pass filter with -1 dB cutoff at 100π rad/sec. (i)
 - Stop band attenuation of 30 dB or greater at 1000π rad/sec. (ii)
 - Monotonic pass band and stop band. (iii)

- (iv) Sampling rate of 2000 samples/sec. (10 Marks)
 b. Design using impulse invariant transformation, an IIR digital low pass filter to satisfy the following specifications:
 - -3.01 dB attenuation at a cut off frequency of 2 rad. (i)
 - Stop band attenuation of 15 dB or greater at 4.8284 rad. (ii)
 - Monotonic pass band and stop band. (iii)

(10 Marks)

- a. Give the time domain and frequency domain representation of
 - Rectangular window. (i)
 - (ii) Bartlett window.
 - Blackmann window. (iii)

(08 Marks)

b. Using a rectangular window, design a symmetric FIR low pass filter whose desired frequency response is given by,

$$H_{d}(\omega) = \begin{cases} e^{-i\omega\tau} & \text{for } |\omega| \le \omega_{C} \\ 0 & \text{Otherwise} \end{cases}$$

The length of the filter should be 7 and $\omega_c = 1$ radians/sample.

(12 Marks)

Give the linear phase realization of the impulse response of an FIR filter using ladder structure.

$$h(n) = \delta(n) - \frac{1}{4}\delta(n-1) + \frac{1}{2}\delta(n-2) + \frac{1}{2}\delta(n-3) - \frac{1}{4}\delta(n-4) + \delta(n-5).$$
 (06 Marks)

b. Give the direct form - I and form - II realization of an IIR filter represented by a transfer

function H(z) =
$$\frac{7z^2 - 5.25z + 1.375}{z^2 - 0.75z + 0.125}$$
 (08 Marks)

in cascade form. (06 Marks) 32